Author:
Alharthi Fahad A.,Alghamdi Abdulaziz Ali,Al-Zaqri Nabil,Alanazi Hamdah S.,Alsyahi Amjad Abdullah,Marghany Adel El,Ahmad Naushad
Abstract
AbstractHerein, a facile green synthesis route was reported for the synthesis of Ag–ZnO nanocomposites using potato residue by simple and cost effective combustion route and investigated the photocatalytic degradation of methylene blue (MB) dye. In the preparation potato extract functioned as a biogenic reducing as well as stabilizing agent for the reduction of Ag + , thus eliminating the need for conventional reducing/stabilizing agents. Ag–ZnO nanocomposites with different Ag mass fractions ranging from 2 to 10% were characterized by using XRD, FT-IR, XPS, SEM, TEM, and UV–Vis spectroscopy. XRD analysis revealed that the as prepared Ag–ZnO nanocomposites possessed high crystallinity with hexagonal wurtzite structure. TEM and SEM images showed that the Ag–ZnO nanocomposites in size ranging from 15 to 25 nm have been obtained, and the particle size was found to increase with the increase in percentage of Ag. FTIR results confirmed the characteristics band of ZnO along with the Ag bands. XPS analysis revealed a pair of doublet with peaks corresponding to Ag and a singlet with peaks corresponding to ZnO. With the increase of concentration of Ag in ZnO, the intensity of NBE emission in the PL spectra was observed to be decrease, resulted to the high photocatalytic activity. Photocatalytic properties of Ag–ZnO nanocomposites evaluated against the MB dye under visible-light irradiation showed superior photodegradation of ~ 96% within 80 min for 2% Ag–ZnO nanocomposites. The apparent reaction rate constant for 2% Ag–ZnO nanocomposites was higher than that of other nanocomposites, which proved to be the best photocatalyst for the maximum degradation of MB. Furthermore, various functional parameters such as dosing, reaction medium, concentration variation were performed on it for better understanding. The enhancement in photocatalytic degradation might be due to the presence of Ag nanoparticles on the surface of ZnO by minimizing the recombination of photo induced charge carriers in the nanocomposites.
Funder
Deanship of Scientific Research at King Saud University
Publisher
Springer Science and Business Media LLC
Cited by
126 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献