Simulation study on the effects of cancellous bone structure in the skull on ultrasonic wave propagation

Author:

Michimoto Itsuki,Miyashita Kazuki,Suzuyama Hidehisa,Yano Keita,Kobayashi Yasuyo,Saito Kozue,Matsukawa Mami

Abstract

AbstractThe transcranial Doppler method (TCD) enables the measurement of cerebral blood flow velocity and detection of emboli by applying an ultrasound probe to the temporal bone window, or the orbital or greater occipital foramina. TCD is widely used for evaluation of cerebral vasospasm after subarachnoid hemorrhage, early detection of patients with arterial stenosis, and the assessment of brain death. However, measurements often become difficult in older women. Among various factors contributing to this problem, we focused on the effect of the diploe in the skull bone on the penetration of ultrasound into the brain. In particular, the effect of the cancellous bone structure in the diploe was investigated. Using a 2D digital bone model, wave propagation through the skull bone was investigated using the finite-difference time-domain (FDTD) method. We fabricated digital bone models with similar structure but different BV/TV (bone volume/total volume) values in the diploe. At a BV/TV of approximately 50–60% (similar to that of older women), the minimum ultrasound amplitude was observed as a result of scattering and multiple reflections in the cancellous diploe. These results suggest that structural changes such as osteoporosis may be one factor hampering TCD measurements.

Funder

Japan Science and Technology Agency

Heiwa Nakajima Foundation

JKA Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3