Tongue crack recognition using segmentation based deep learning

Author:

Yan Jianjun,Cai Jinxing,Xu Zi,Guo Rui,Zhou Wei,Yan Haixia,Xu Zhaoxia,Wang Yiqin

Abstract

AbstractTongue cracks refer to fissures with different depth and shapes on the tongue’s surface, which can characterize the pathological characteristics of spleen and stomach. Tongue cracks are of great significance to the objective study of tongue diagnosis. However, tongue cracks are small and complex, existing methods are difficult to extract them effectively. In order to achieve more accurate extraction and identification of tongue crack, this paper proposes to apply a deep learning network based on image segmentation (Segmentation-Based Deep-Learning, SBDL) to extract and identify tongue crack. In addition, we have studied the quantitative description of tongue crack features. Firstly, the pre-processed tongue crack samples were amplified by using adding salt and pepper noise, changing the contrast and horizontal mirroring; secondly, the annotation tool Crack-Tongue was used to label tongue crack; thirdly, the tongue crack extraction model was trained by using SBDL; fourthly, the cracks on the tongue surface were detected and located by the segmentation network, and then the output and features of the segmentation network were put into the decision network for the classification of crack tongue images; finally, the tongue crack segmentation and identification results were quantitatively evaluated. The experimental results showed that the tongue crack extraction and recognition results based on SBDL were better than Mask Region-based Convolutional Neural Network (Mask R-CNN), DeeplabV3+, U-Net, UNet++ and Semantic Segmentation with Adversarial Learning (SegAN). This method effectively solved the inaccurate tongue crack extraction caused by the tongue crack’s color being close to the surrounding tongue coating’s color. This method can achieve better tongue crack extraction and recognition results on a small tongue crack data set and provides a new idea for tongue crack recognition, which is of practical value for tongue diagnosis objectification.

Funder

National Natural Science Foundation of China

Shanghai Science and Technology Committee Funding

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3