Author:
Lee Yin Jen,Qi Yi,Zhou Guangya,Lua Kim Boon
Abstract
AbstractA silicon chip integrated microelectromechanical (MEMS) wind energy harvester, based on the vortex-induced vibration (VIV) concept, has been designed, fabricated, and tested as a proof-of-concept demonstration. The harvester comprises of a cylindrical oscillator attached to a piezoelectric MEMS device. Wind tunnel experiments are conducted to measure the power output of the energy harvester. Additionally, the energy harvester is placed within a formation of up to 25 cylinders to test whether the vortex interactions of multiple cylinders in formation can enhance the power output. Experiments show power output in the nanowatt range, and the energy harvester within a formation of cylinders yield noticeably higher power output compared to the energy harvester in isolation. A more detailed investigation conducted using computational fluid dynamics simulations indicates that vortices shed from upstream cylinders introduce large periodic transverse velocity component on the incoming flow encountered by the downstream cylinders, hence increasing VIV response. For the first time, the use of formation effect to enhance the wind energy harvesting at microscale has been demonstrated. This proof-of-concept demonstrates a potential means of powering small off-grid sensors in a cost-effective manner due to the easy integration of the energy harvester and sensor on the same silicon chip.
Publisher
Springer Science and Business Media LLC
Reference15 articles.
1. Sarpkaya, T. A. A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct. 19, 389–447 (2004).
2. Williamson, C. H. K. & Govardhan, R. Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 413–455 (2004).
3. Abdelkefi, A. Aeroelastic energy harvesting: A review. Int. J. Eng. Sci. 100, 112–135 (2016).
4. Zhao, L. & Yang, Y. Toward small-scale wind energy harvesting: Design, enhancement, performance comparison, and applicability. Shock. Vib. 2017, 3585972 (2017).
5. Liu, H. et al. Development of piezoelectric microcantilever flow sensor with wind-driven energy harvesting capability. Appl. Phys. Lett. 100, 223905 (2012).
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献