Time-ordering in Heisenberg’s equation of motion as related to spontaneous radiation

Author:

Strycker Benjamin D.

Abstract

AbstractDespite many years of research into Raman phenomena, the problem of how to include both spontaneous and stimulated Raman scattering into a unified set of partial differential equations persists. The issue is solved by formulating the quantum dynamics in the Heisenberg picture with a rigorous accounting for both time- and normal-ordering of the operators. It is shown how this can be done in a simple, straightforward way. Firstly, the technique is applied to a two-level Raman system, and comparison of analytical and numerical results verifies the approach. A connection to a fully time-dependent Langevin operator method is made for the spontaneous initiation of stimulated Raman scattering. Secondly, the technique is demonstrated for the much-studied two-level atom both in vacuum and in a lossy dielectric medium. It is shown to be fully consistent with accepted theories: using the rotating wave approximation, the Einstein A coefficient for the rate of spontaneous emission from a two-level atom can be derived in a manner parallel to the Weisskopf–Wigner approximation. The Lamb frequency shift is also calculated. It is shown throughout that field operators corresponding to spontaneous radiative terms do not commute with atomic/molecular operators. The approach may prove useful in many areas, including modeling the propagation of next-generation high-energy, high-intensity ultrafast laser pulses as well as spontaneous radiative processes in lossy media.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference57 articles.

1. Einstein, A. On the quantum theory of radiation. Physikalische Zeitschrift 18, 121 (1917).

2. Dirac, P. The quantum theory of emission and absorption of radiation. Proc. Roy. Soc. A 114, 243–265 (1927).

3. Dirac, P. The quantum theory of dispersion. Proc. Roy. Soc. A 114, 710–728 (1927).

4. Jaynes, E. & Cummings, F. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89–109 (1963).

5. Nesbet, R. Where semiclassical radiation theory fails. Phys. Rev. Lett. 27, 553–556 (1971).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3