Automatic classification of normal and abnormal cell division using deep learning

Author:

Delgado-Rodriguez Pablo,Sánchez Rodrigo Morales,Rouméas-Noël Elouan,Paris François,Munoz-Barrutia Arrate

Abstract

AbstractIn recent years, there has been a surge in the development of methods for cell segmentation and tracking, with initiatives like the Cell Tracking Challenge driving progress in the field. Most studies focus on regular cell population videos in which cells are segmented and followed, and parental relationships annotated. However, DNA damage induced by genotoxic drugs or ionizing radiation produces additional abnormal events since it leads to behaviors like abnormal cell divisions (resulting in a number of daughters different from two) and cell death. With this in mind, we developed an automatic mitosis classifier to categorize small mitosis image sequences centered around one cell as “Normal” or “Abnormal.” These mitosis sequences were extracted from videos of cell populations exposed to varying levels of radiation that affect the cell cycle’s development. We explored several deep-learning architectures and found that a network with a ResNet50 backbone and including a Long Short-Term Memory (LSTM) layer produced the best results (mean F1-score: 0.93 ± 0.06). In the future, we plan to integrate this classifier with cell segmentation and tracking to build phylogenetic trees of the population after genomic stress.

Funder

Ministerio de Ciencia, Innovación y Universidades

Ligue Nationale Contre le Cancer

Fondation ARC

Cancéropole Grand Ouest

Région Pays de la Loire

Publisher

Springer Science and Business Media LLC

Reference26 articles.

1. Ulman, V. et al. An objective comparison of cell tracking algorithms. Nat. Methods 14(12), 1141–1152 (2017).

2. Paris, F., Renaud, L. I., Ribeiro, T., Delgado-Rodriguez, P., Taupin, M. & Magnin, M., et al. EPICeA : A comprehensive radiobiological assay using dynamic single cells phenotypic tracking under videomicroscopy. Res Sq. (2022).

3. Maška, M., Ulman, V., Delgado-Rodriguez, P., Gómez-de-Mariscal, E., Nečasová, T. & Guerrero Peña, F. A., et al. The cell tracking challenge: 10 years of objective benchmarking. Nat Methods. (in press).

4. Baskar, R., Dai, J., Wenlong, N., Yeo, R. & Yeoh, K.-W. Biological response of cancer cells to radiation treatment. Front. Mol. Biosci. 1, 24 (2014).

5. Bartnykaitė, A., Ugenskienė, R., Inčiūra, A. & Juozaitytė, E. Breast cancer cell response to ionizing radiation. Eighth International Conference on Radiation in Various Fields of Research, Virtual Conference, 2020 : (RAD 2020) : Book of Abstracts : [July 20–24, 2020, Herceg Novi, Montenegro] / [editor Goran Ristić]. Niš : RAD Centre, 2020. 2020.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3