Impact of ionic liquids on absorption behaviour of natural fibers/biopolyethylene biocomposites

Author:

Rakowska Joanna,Węgrzyn Magdalena,Rudnik Ewa

Abstract

AbstractFor many years, there has been a growing interest in technologies enabling the replacement of conventional polymer composites with new materials made from renewable raw materials. It is important to assess the behaviour of biocomposites in various environments, including humid conditions. Recently, ionic liquids have been studied as potential modificators of polymers properties, especially flame retardants. In previous study the impact of ionic liquids on thermal and mechanical properties of biocomposites was assessed. In this study the influence of ionic liquids on moisture absorption properties of biocomposites at different relative humidities (RH) was assessed. The biocomposites were built from polyethylene from renewable resources reinforced with flax or hemp fibers. The effect of the addition of 0.5, 1.0, 2.5 and 5 wt.% phosphonium ionic liquids on the moisture absorption properties of biopolyethylene biocomposite reinforced with natural fibers were tested. Mixtures of biopolyethylene, natural fibers and ionic liquid were calendered at 180 °C and then were compounded by injection moulding. The prepared samples were then characterized for their moisture uptake at 30%, 50% and 100% RH. Moisture absorption by biocomposites depended on the structure of the ionic liquid and the type of fiber. The saturation of moisture of about 0.054% was found for samples modified with tributylethylphosphonium diethyl phosphate and reinforced with flax and hemp fibers at RH 100%. The environmental resistance of the materials was found to be improved after the addition of trihexyltetradecylphosphonium bis (2,4,4-trimethylpentyl) phosphinate. Biocomposites with hemp fibers showed slightly less absorption than with flax fibers. It was also observed that ionic liquids: (bis (2,4,4-trimethylpentyl) phosphinate trihexyltetradecylphosphonate) and (bis (2-ethylhexyl) trihexyltetradecylphosphonium phosphate) protect PE biocomposites with plant fibers against mold in high humidity conditions (RH 100%).

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference54 articles.

1. Halimatul, M. J., Sapuan, S. M., Jawaid, M., Ishak, M. R. & Ilyas, R. A. Water absorption and water solubility properties of sago starch biopolymer composite films filled with sugar palm particles. Polimery/Polymers 64, 596–604 (2019).

2. Nakajima, H., Dijkstra, P. & Loos, K. The recent developments in biobased polymers toward general and engineering applications: Polymers that are upgraded from biodegradable polymers, analogous to petroleum-derived polymers, and newly developed. Polymers 9, 523 (2017).

3. Vinod, A., Sanjay, M. R., Suchart, S. & Jyotishkumar, P. Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. J. Clean. Prod. 258, 120978 (2020).

4. Cañigueral, N. et al. Behavior of biocomposite materials from flax strands and starch-based biopolymer. Chem. Eng. Sci. 64, 2651–2658 (2009).

5. Lomelí Ramírez, M. G. et al. Study of the properties of biocomposites. Part I. Cassava starch-green coir fibers from Brazil. Carbohydr. Polym. 86, 1712–1722 (2011).

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3