Negative radiation pressure in metamaterials explained by light-driven atomic mass density rarefication waves

Author:

Partanen Mikko,Tulkki Jukka

Abstract

AbstractThe momentum and radiation pressure of light in negative-index metamaterials (NIMs) are commonly expected to reverse their direction from what is observed for normal materials. The negative refraction and inverse Doppler effect of light in NIMs have been experimentally observed, but the equally surprising phenomenon, the negative radiation pressure of light, still lacks experimental verification. We show by simulating the exact position- and time-dependent field-material dynamics in NIMs that the momentum and radiation pressure of light in NIMs can be either positive or negative depending on their subwavelength structure. In NIMs exhibiting negative radiation pressure, the negative total momentum of light is caused by the sum of the positive momentum of the electromagnetic field and the negative momentum of the material. The negative momentum of the material results from the optical force density, which drives atoms backward and reduces the local density of atoms at the site of the light field. In contrast to earlier works, light in NIMs exhibiting negative radiation pressure has both negative total momentum and energy. For the experimental discovery of the negative radiation pressure, one must carefully design the NIM structure and record the joint total pressure of the field and material momentum components.

Funder

Research Executive Agency

Academy of Finland

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3