A data driven machine learning approach to differentiate between autism spectrum disorder and attention-deficit/hyperactivity disorder based on the best-practice diagnostic instruments for autism

Author:

Wolff Nicole,Kohls Gregor,Mack Judith T.,Vahid AmiraliORCID,Elster Erik M.,Stroth Sanna,Poustka Luise,Kuepper Charlotte,Roepke Stefan,Kamp-Becker Inge,Roessner VeitORCID

Abstract

AbstractAutism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are two frequently co-occurring neurodevelopmental conditions that share certain symptomatology, including social difficulties. This presents practitioners with challenging (differential) diagnostic considerations, particularly in clinically more complex cases with co-occurring ASD and ADHD. Therefore, the primary aim of the current study was to apply a data-driven machine learning approach (support vector machine) to determine whether and which items from the best-practice clinical instruments for diagnosing ASD (ADOS, ADI-R) would best differentiate between four groups of individuals referred to specialized ASD clinics (i.e., ASD, ADHD, ASD + ADHD, ND = no diagnosis). We found that a subset of five features from both ADOS (clinical observation) and ADI-R (parental interview) reliably differentiated between ASD groups (ASD & ASD + ADHD) and non-ASD groups (ADHD & ND), and these features corresponded to the social-communication but also restrictive and repetitive behavior domains. In conclusion, the results of the current study support the idea that detecting ASD in individuals with suspected signs of the diagnosis, including those with co-occurring ADHD, is possible with considerably fewer items relative to the original ADOS/2 and ADI-R algorithms (i.e., 92% item reduction) while preserving relatively high diagnostic accuracy. Clinical implications and study limitations are discussed.

Funder

Technische Universität Dresden

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3