Co-expression based cancer staging and application

Author:

Yu XiangchunORCID,Cao ShaORCID,Zhou Yi,Yu Zhezhou,Xu Ying

Abstract

AbstractA novel method is developed for predicting the stage of a cancer tissue based on the consistency level between the co-expression patterns in the given sample and samples in a specific stage. The basis for the prediction method is that cancer samples of the same stage share common functionalities as reflected by the co-expression patterns, which are distinct from samples in the other stages. Test results reveal that our prediction results are as good or potentially better than manually annotated stages by cancer pathologists. This new co-expression-based capability enables us to study how functionalities of cancer samples change as they evolve from early to the advanced stage. New and exciting results are discovered through such functional analyses, which offer new insights about what functions tend to be lost at what stage compared to the control tissues and similarly what new functions emerge as a cancer advances. To the best of our knowledge, this new capability represents the first computational method for accurately staging a cancer sample. The R source code used in this study is available at GitHub (https://github.com/yxchspring/CECS).

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference38 articles.

1. Casás-Selves, M. & Degregori, J. How cancer shapes evolution and how evolution shapes cancer. Evol. Educ. Outreach 4, 624–634 (2011).

2. Ventola, C. L. Cancer immunotherapy, part 3: challenges and future trends. P & T 42, 514–521 (2017).

3. Lukong, K. E. Understanding breast cancer—the long and winding road. Bba Clin. 7, 64–77 (2017).

4. Martin, T. A., Ye, L., Sanders, A. J., Lane, J., & Jiang, W. G. Syntax of referencing in metastatic cancer clinical biological perspectives (ed. Jandial, R.) 135–168 (Landes Bioscience, 2013).

5. Seyfried, T. N. & Huysentruyt, L. C. On the origin of cancer metastasis. Crit. Rev. Oncog. 18, 43–73 (2013).

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3