Demonstration of extrinsic chirality in self-assembled asymmetric plasmonic metasurfaces and nanohole arrays

Author:

Petronijevic EmilijaORCID,Cesca T.ORCID,Scian C.,Mattei G.,Voti R. Li,Sibilia C.,Belardini A.ORCID

Abstract

AbstractChirality, the lack of mirror symmetry, can be mimicked in nanophotonics and plasmonics by breaking the symmetry in light-nanostructure interaction. Here we report on versatile use of nanosphere lithography for the fabrication of low-cost metasurfaces, which exhibit broadband handedness- and angle-dependent extinction in the near-infrared range, thus offering extrinsic chiro-optical behavior. We measure wavelength and angle dependence of the extinction for four samples. Two samples are made of polystyrene nanospheres asymmetrically covered by silver and gold in one case and silver only in the other case, with a nanohole array at the bottom. The other two samples are nanohole arrays, obtained after the nanosphere removal from the first two samples. Rich extrinsic chiral features are governed by different chiro-optical mechanisms in the three-dimensional plasmonic semi-shells and planar nanohole arrays. We also measure Stokes parameters in the same wavelength and incidence angle range and show that the transmitted fields follow the extrinsic chirality features of the extinction dissymmetry. We further study the influences of the nanostructured shapes and in-plane orientations on the intrinsic vs extrinsic chirality. The nanoholes are modelled as oval shapes in metal, showing good agreement with the experiments. We thus confirm that nanosphere lithography can provide different geometries for chiral light manipulation at the nanoscale, with the possibility to extend functionalities with optimized oval shapes and combination of constituent metals.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3