Author:
Hashimoto Hideki,Onodera Yohei,Tahara Shuta,Kohara Shinji,Yazawa Koji,Segawa Hiroyo,Murakami Motohiko,Ohara Koji
Abstract
AbstractThe fabrication of novel oxide glass is a challenging topic in glass science. Alumina (Al2O3) glass cannot be fabricated by a conventional melt–quenching method, since Al2O3 is not a glass former. We found that amorphous Al2O3 synthesized by the electrochemical anodization of aluminum metal shows a glass transition. The neutron diffraction pattern of the glass exhibits an extremely sharp diffraction peak owing to the significantly dense packing of oxygen atoms. Structural modeling based on X-ray/neutron diffraction and NMR data suggests that the average Al–O coordination number is 4.66 and confirms the formation of OAl3 triclusters associated with the large contribution of edge-sharing Al–O polyhedra. The formation of edge-sharing AlO5 and AlO6 polyhedra is completely outside of the corner-sharing tetrahedra motif in Zachariasen’s conventional glass formation concept. We show that the electrochemical anodization method leads to a new path for fabricating novel single-component oxide glasses.
Funder
MEXT
Japan Society for the Promotion of Science
Japan Society for the Promotion of Science London
Publisher
Springer Science and Business Media LLC
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献