Comparison of physiological responses of running on a nonmotorized and conventional motor-propelled treadmill at similar intensities

Author:

Sousa Filipe A. B.ORCID,Manchado-Gobatto Fúlvia B.ORCID,de A. Rodrigues NatáliaORCID,de Araujo Gustavo G.ORCID,Gobatto Claudio A.ORCID

Abstract

AbstractThis study aimed to test the agreement of the incremental test's physiological responses between tethered running on a nonmotorized treadmill (NMT) to matched relative intensities while running on a conventional motorized treadmill (MT). Using a within-subject crossover design, nine male recreational runners (age = 22 ± 5 years; height = 175 ± 6 cm; weight = 68.0 ± 16.6 kg) underwent two test sessions: one was an incremental intensity protocol on an MT; the other was on an instrumented NMT. Intensity thresholds at $${\dot{\text V}}$$ V ˙ O2max, respiratory compensation point (iRCP), and lactate threshold (iLT) were registered for analysis, together with $${\dot{\text V}}$$ V ˙ ̇O2, $${\dot{\text V}}$$ V ˙ ̇E, ƒR, and blood lactate concentration ([Lac]). Comparisons were based on hypothesis testing (Student's T-test), effect sizes (Cohen's d), ICC, and Bland Altman analysis. Statistical significance was accepted at p < 0.05. Attained $${\dot{\text V}}$$ V ˙ O2max (MT = 52.2 ± 7.3 mL·kg-1·min-1 vs NMT = 50.1 ± 8.1 mL·kg-1·min-1) and $${\dot{\text V}}$$ V ˙ ̇O2 at iRCP (MT = 46.3 ± 7.2 mL·kg-1·min-1 vs NMT = 42.8 ± 9.3 mL·kg-1·min-1) were not different between ergometers (p = 0.15 and 0.13, respectively), with significant ICCs (0.84 and 0.70, respectively) and Pearson’s correlations (r = 0.87 and 0.76, respectively). The [Lac] at iLT presented poor agreement between conditions. Significant correlations were found (r between 0.72 and 0.83) for relative power values of i$${\dot{\text V}}$$ V ˙ O2max (6.56 ± 1.28 W·kg−1), iRCP (4.38 ± 1.50 W·kg−1), and iLT (4.15 ± 1.29 W·kg−1) related to their counterpart obtained on MT. Results show that running on an NMT offers a higher glycolytic demand under the same relative internal load as running on an MT but with a similar aerobic response and correlated intensity determination.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3