Experimental study on the reasonable proportions of rock-like materials for water-induced strength degradation in rock slope model test

Author:

Cui Yuan,Xu Chao,Xue Lei,Dong Jinyu,Jiang Tong

Abstract

AbstractWater-induced strength deterioration of rock mass is a crucial factor for rock slope instability. To better show the degradation process of rock slope water–rock interaction, we used bentonite as a water-sensitive regulator to build a new rock-like material that matches the features of water-induced strength degradation based on the cement-gypsum bonded materials. Twenty-five schemes of the material mixture proportion were designed using the orthogonal design method considering four factors with five variable levels, and a variety of experiments were conducted to obtain physico-mechanical parameters. In addition, one group of rock-like material proportion was selected and applied to the large-scale physical model test. The experiment results reveal that: (1) The failure mode of this rock-like material is highly similar to that of natural rock masses, and the physico-mechanical parameters vary over a wide range; (2) The bentonite content has a significant influence on the density, elastic modulus, and tensile strength of rock-like materials; (3) It is feasible to obtain the regression equation based on the linear regression analysis to determine the proportion of rock-like material; (4) Through application, the new rock-like material can effectively simulate or reveal the startup mechanism and instability characteristics of rock slopes under water-induced degradation. These studies can serve as a guide for the fabrication of rock-like material in the other model tests.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3