Dynamics of radiative Williamson hybrid nanofluid with entropy generation: significance in solar aircraft

Author:

Hussain Syed M.

Abstract

AbstractSun based energy is the chief source of heat from the sun, and it utilizes in photovoltaic cells, sun-based power plates, photovoltaic lights and sun-based hybrid nanofluids. Specialists are currently exploring the utilization of nanotechnology and sun-based radiation to further develop flight effectiveness. In this analysis, a hybrid nanofluid is moving over an expandable sheet. Analysts are presently exploring the utilization of nanotechnology and sunlight-based radiation to further develop avionics productivity. To explore the heat transfer rate phenomenon, a hybrid nanofluid stream is moving towards a trough having a parabolic type shape and is located inside of solar airplane wings. The expression used to depict the heat transfer phenomenon was sun based thermal radiation. Heat transfer proficiency of airplane wings is evaluated with the inclusion of distinguished effects like viscous dissipation, slanted magnetic field and solar-based thermal radiations. The Williamson hybrid nanofluid past an expandable sheet was read up for entropy generation. The energy and momentum expressions were solved numerically with the utilization of the Keller box approach. The nano solid particles, which are comprised of copper (Cu) and Graphene oxide, are dispersed utilizing SA (Sodium alginate) as an ordinary liquid (GO). A huge number of control factors, for example, temperature, shear stress, velocity, frictional element along with Nusselt number are investigated in detail. Intensification of thermal conduction, viscous dissipation and radiation improve the performance of airplane wings subjected to heat transmission. Hybrid nanofluid performance is much better than the ordinary nanofluid when it comes to heat transmission analysis.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3