Author:
Aldonza Mark Borris D.,Reyes Roben D. Delos,Kim Young Seo,Ku Jayoung,Barsallo Ana Melisa,Hong Ji-Young,Lee Sang Kook,Ryu Han Suk,Park YongKeun,Cho Je-Yoel,Kim Yoosik
Abstract
AbstractDrug resistance remains the major culprit of therapy failure in disseminated cancers. Simultaneous resistance to multiple, chemically different drugs feeds this failure resulting in cancer relapse. Here, we investigate co-resistance signatures shared between antimitotic drugs (AMDs) and inhibitors of receptor tyrosine kinases (RTKs) to probe mechanisms of secondary resistance. We map co-resistance ranks in multiple drug pairs and identified a more widespread occurrence of co-resistance to the EGFR-tyrosine kinase inhibitor (TKI) gefitinib in hundreds of cancer cell lines resistant to at least 11 AMDs. By surveying different parameters of genomic alterations, we find that the two RTKs EGFR and AXL displayed similar alteration and expression signatures. Using acquired paclitaxel and epothilone B resistance as first-line AMD failure models, we show that a stable collateral resistance to gefitinib can be relayed by entering a dynamic, drug-tolerant persister state where AXL acts as bypass signal. Delayed AXL degradation rendered this persistence to become stably resistant. We probed this degradation process using a new EGFR-TKI candidate YD and demonstrated that AXL bypass-driven collateral resistance can be suppressed pharmacologically. The findings emphasize that AXL bypass track is employed by chemoresistant cancer cells upon EGFR inhibition to enter a persister state and evolve resistance to EGFR-TKIs.
Funder
Hyundai Motor Chung Mong-Koo Foundation Global Scholarship
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献