Study on adsorption of hexavalent chromium by composite material prepared from iron-based solid wastes

Author:

Qi Jiamin,Li Bin,Zhou Pengxiang,Su Xintai,Yang Di,Wu Jinxiong,Wang Zixuan,Liang Xiangjing

Abstract

AbstractA new adsorbent with chromium removal function was synthesized by carbon thermal method using iron-containing waste Fenton sludge and carbon-containing solid waste fly ash to treat high pH scoring wastewater generated from industrial processes. The results showed that the adsorbent used T = 273.15 K, pH = 10, t = 1200 min, C0 = 100 mg/L, had a removal rate of Cr(VI) of more than 80%, and the adsorption capacity could reach 393.79 mg/g. The characterization results show that the synthesized mesoporous nitrogen-doped composite material has a large specific surface area and mesoporous structure, and the surface of the material is rich in oxygen-containing functional groups and active sites. Compared with other studies, the adsorption capacity of the material is larger, which indicates that the removal effect of Cr(VI) in this study is better. The adsorption kinetic results show that the adsorption follows a pseudo second kinetic model, and the adsorption process is a chemisorption involving electron sharing or electron exchange. This experiment designed a simple method to synthesize mesoporous nitrogen-doped composites using industrial solid waste, with raw materials from cheap and easily available industrial solid waste, and solved the dual problems of heavy metals in wastewater and solid waste, providing a new idea for the resource utilization of Fenton sludge while not producing secondary pollution.

Funder

Natural Science Foundation of Yunnan Province

National Key Research and Development Program of China

National Natural Science Foundation of China

Open Fund of Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3