Parametrically optimized feather degradation by Bacillus velezensis NCIM 5802 and delineation of keratin hydrolysis by multi-scale analysis for poultry waste management

Author:

Sharma Isha,Pranaw Kumar,Soni Hemant,Rawat Hemant Kumar,Kango Naveen

Abstract

AbstractEnormous amounts of keratinaceous waste make a significant and unexploited protein reserve that can be utilized through bioconversion into high-value products using microbial keratinases. This study was intended to assess the keratinase production from a newly isolated B. velezensis NCIM 5802 that can proficiently hydrolyze chicken feathers. Incubation parameters used to produce keratinase enzyme were optimized through the Response Surface Methodology (RSM) with chicken feathers as substrate. Optimization elevated the keratinase production and feather degradation by 4.92-folds (109.7 U/mL) and 2.5 folds (95.8%), respectively. Time-course profile revealed a direct correlation among bacterial growth, feather degradation, keratinase production and amino acid generation. Biochemical properties of the keratinase were evaluated, where it showed optimal activity at 60 °C and pH 10.0. The keratinase was inhibited by EDTA and PMSF, indicating it to be a serine–metalloprotease. Zymography revealed the presence of four distinct keratinases (Mr ~ 100, 62.5, 36.5 and 25 kDa) indicating its multiple forms. NMR and mass spectroscopic studies confirmed the presence of 18 free amino acids in the feather hydrolysates. Changes in feather keratin brought about by the keratinase action were studied by X-ray diffraction (XRD) and spectroscopic (FTIR, Raman) analyses, which showed a decrease in the total crystallinity index (TCI) (1.00–0.63) and confirmed the degradation of its crystalline domain. Scanning electron microscopy (SEM) revealed the sequential structural changes occurring in the feather keratin during degradation. Present study explored the use of keratinolytic potential of the newly isolated B. velezensis NCIM 5802 in chicken feather degradation and also, unraveled the underlying keratin hydrolysis mechanism through various analyses.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3