Author:
Moreno-Blanco Ana,Solano-Collado Virtu,Ortuno-Camuñas Alejandro,Espinosa Manuel,Ruiz-Cruz Sofía,Bravo Alicia
Abstract
AbstractThe Gram-positive bacterium Streptococcus pneumoniae is a major human pathogen that shows high levels of genetic variability. The pneumococcal R6 genome harbours several gene clusters that are not present in all strains of the species. One of these clusters contains two divergent genes, pclA, which encodes a putative surface-exposed protein that contains large regions of collagen-like repeats, and spr1404 (here named pclR). PclA was shown to mediate pneumococcal adherence to host cells in vitro. In this work, we demonstrate that PclR (494 amino acids) is a transcriptional activator. It stimulates transcription of the pclA gene by binding to a specific DNA site upstream of the core promoter. In addition, we show that PclR has common features with the MgaSpn transcriptional regulator (493 amino acids), which is also encoded by the R6 genome. These proteins have high sequence similarity (60.3%), share the same organization of predicted functional domains, and generate multimeric complexes on linear double-stranded DNAs. However, on the PpclA promoter region, MgaSpn binds to a site different from the one recognized by PclR. Our results indicate that PclR and MgaSpn have similar DNA-binding properties but different DNA-binding specificities, pointing to a different regulatory role of both proteins.
Funder
Spanish Ministry of Science and Innovation
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献