Author:
Song Xiaoyan,Zhang Gaomin,Zhou Chang
Abstract
AbstractEfficient communication is crucial in reducing injuries and fatalities in coal mine accidents, necessitating the study of simulation methods for mine communication. When transceiver antennas are positioned close to the same side of the tunnel, the simulation results from the Ray Tracing (RT) method exhibit significant errors. Additionally, the Finite-Difference Time-Domain (FDTD) method demands substantial computational resources. In response to these challenges, we propose a RT-FDTD method, guided by the law of conservation of energy. This approach involves dividing the mine tunnel into a cuboidal region, using the RT method to calculate the electric field strength on the cuboid’s surface, and then employing this as the excitation source for the FDTD method. Subsequently, the FDTD method is used to calculate the electric field strength within the cuboid. Experimental results demonstrate that the RT-FDTD method effectively mitigates the limitations of the RT and FDTD methods, enhancing both the efficiency and accuracy of simulations in underground mine.
Funder
National Key Research and Development Program of China
Key Research and Development Project of Hainan Province
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献