Flow cytometric identification and cell-line establishment of macrophages in naked mole-rats

Author:

Wada Haruka,Shibata Yuhei,Abe Yurika,Otsuka Ryo,Eguchi Nanami,Kawamura Yoshimi,Oka Kaori,Baghdadi Muhammad,Atsumi Tatsuya,Miura Kyoko,Seino Ken-ichiro

Abstract

AbstractNaked mole rats (NMRs) have extraordinarily long lifespans and anti-tumorigenic capability. Recent studies of humans and mice have shown that many age-related diseases, including cancer, are strongly correlated with immunity, and macrophages play particularly important roles in immune regulation. Therefore, NMR macrophages may contribute to their unique phenotypes. However, studies of the roles of macrophages are limited by material restrictions and the lack of an established experimental strategy. In this study, we developed a flow cytometric strategy to identify NMR macrophages. The NMR macrophages were extractable using an off-the-shelf anti-CD11b antibody, M1/70, and forward/side scatter data obtained by flow cytometry. NMR macrophages proliferated in response to human/mouse recombinant M-CSF and engulfed Escherichia coli particles. Interestingly, the majority of NMR macrophages exhibited co-staining with an anti-NK1.1 antibody, PK136. NK1.1 antigen crosslinking with PK136 results in mouse NK cell stimulation; similarly, NMR macrophages proliferated in response to NK1.1 antibody treatment. Furthermore, we successfully established an NMR macrophage cell line, NPM1, by transduction of Simian virus 40 early region that proliferated indefinitely without cytokines and retained its phagocytotic capacity. The NPM1 would contribute to further studies on the immunity of NMRs.

Funder

MEXT | Japan Society for the Promotion of Science

Japan Agency for Medical Research and Development

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3