CuO nanoparticles mixed with activated BC extracted from algae as promising material for supercapacitor electrodes

Author:

Ahmed Alsharif Marwah,Alatawi Aishah,Hamdalla Taymour A.,Alfadhli S.,Darwish A. A. A.

Abstract

AbstractThe present analysis aims to use existing resources to lower the cost of electrodes and reduce environmental pollution by utilizing waste materials like green algae. In the present research, the hydrothermal carbonization technique was utilized to synthesize a nano sized CuO mixed with activated biochar (CuO@BC) extracted from red sea algae (Chlorophyta). The CuO@BC sample was extensively examined using several advanced physical techniques, such as UV/Visible spectroscopy, FTIR, XED, HRTEM, SEM, EDX, BET, and TGA. The HRTEM indicated that the size of the particles is 32 nm with a larger surface area and without aggregations. The BET analysis of CuO@BC indicates that the material contains pores of a relatively large size and with a pore diameter of about 42.56 A°. The electrochemical analysis of CuO@BC modified glassy carbon electrode CuO@BC/GCE has been investigated using CV, GCD, and EIS techniques. This CuO@BC/GCE shows excellent electrochemical features that are significant for energy storage applications. The CuO@BC/GCE showed a specific capacitance of approximately 353 Fg−1 which is higher compared to individual materials. Overall, the research outcomes suggest that the CuO@BC/GCE shows potential for use in high-performance supercapacitors as energy storage systems that are eco-friendly and sustainable.

Funder

University of Tabuk

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3