Author:
Kitanaka Ryosuke,Tsuboi Motohiro,Numata Tomoko,Muramiya Yusuke,Yoshida Hidekazu,Ozaki Yukihiro
Abstract
AbstractThe combination of Raman imaging and multivariate curve resolution (MCR) or classical least squares (CLS) has allowed us to explore the distribution and identification of components in a gigantic spherical dolomite concretion. It has been found by the MCR and CLS analyses of imaging data that the concretion contains dolomite, kerogen, anatase, quartz, plagioclase, and carbon materials with considerably large distribution of dolomite. The existence of these components has also been confirmed by the point-by-point analysis of imaging data. The distributions of these components were clearly observed by Raman images. Of note is that the amount of carbon materials is considerably large, and they are buried among the matrix sedimentary grains in the concretion, suggesting that there exist soft tissues with biological origin. Moreover, one of the loading spectra of CLS shows intense bands in the region of 3000–2800 cm−1, and bands at ca. 1658, ca. 1585, 1455, 1323, and 1261 cm−1. These bands indicate the existence of decomposed organic materials in the concretion. Raman imaging of concretions provides direct evidence that concretions are of biological organic origin.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献