Variable sensitivity multimaterial robotic e-skin combining electronic and ionic conductivity using electrical impedance tomography

Author:

Costa Cornellà Aleix,Hardman David,Costi Leone,Brancart Joost,Van Assche Guy,Iida Fumiya

Abstract

AbstractElectronic skins (e-skins) aim to replicate the capabilities of human skin by integrating electronic components and advanced materials into a flexible, thin, and stretchable substrate. Electrical impedance tomography (EIT) has recently been adopted in the area of e-skin thanks to its robustness and simplicity of fabrication compared to previous methods. However, the most common EIT configurations have limitations in terms of low sensitivities in areas far from the electrodes. Here we combine two piezoresistive materials with different conductivities and charge carriers, creating anisotropy in the sensitive part of the e-skin. The bottom layer consists of an ionically conducting hydrogel, while the top layer is a self-healing composite that conducts electrons through a percolating carbon black network. By changing the pattern of the top layer, the resulting distribution of currents in the e-skin can be tuned to locally adapt the sensitivity. This approach can be used to biomimetically adjust the sensitivities of different regions of the skin. It was demonstrated how the sensitivity increased by 500% and the localization error reduced by 40% compared to the homogeneous case, eliminating the lower sensitivity regions. This principle enables integrating the various sensing capabilities of our skins into complex 3D geometries. In addition, both layers of the developed e-skin have self-healing capabilities, showing no statistically significant difference in localization performance before the damage and after healing. The self-healing bilayer e-skin could recover full sensing capabilities after healing of severe damage.

Funder

H2020 Marie Skłodowska-Curie Actions

Engineering and Physical Sciences Research Council

Fonds Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3