An organic electrochemical transistor for multi-modal sensing, memory and processing

Author:

Wang Shijie,Chen Xi,Zhao Chao,Kong Yuxin,Lin Baojun,Wu YongyiORCID,Bi ZhaozhaoORCID,Xuan Ziyi,Li TaoORCID,Li Yuxiang,Zhang WeiORCID,Ma EnORCID,Wang ZhongruiORCID,Ma WeiORCID

Abstract

AbstractBy integrating sensing, memory and processing functionalities, biological nervous systems are energy and area efficient. Emulating such capabilities in artificial systems is, however, challenging and is limited by the device heterogeneity of sensing and processing cores. Here we report an organic electrochemical transistor capable of sensing, memory and processing. The device has a vertical traverse architecture and a crystalline–amorphous channel that can be selectively doped by ions to enable two reconfigurable modes: a volatile receptor and a non-volatile synapse. As a volatile receptor, the device is capable of multi-modal sensing and is responsive to stimuli such as ions and light. As a non-volatile synapse, it is capable of 10-bit analogue states, low switching stochasticity and good state retention. We also show that the homogeneous integration of the devices could provide functions such as conditioned reflexes and could be used for real-time cardiac disease diagnoses via reservoir computing.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Instrumentation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3