Author:
Huang Yin Nan,Meftah El-Mehdi,Pion Charlotte H.,Mac-Thiong Jean-Marc,Cohen-Adad Julien,Barthélemy Dorothy
Abstract
Abstract
Study design
Observational, cohort study.
Objectives
(1) Determine the feasibility and relevance of assessing corticospinal, sensory, and spinal pathways early after traumatic spinal cord injury (SCI) in a rehabilitation setting. (2) Validate whether electrophysiological and magnetic resonance imaging (MRI) measures taken early after SCI could identify preserved neural pathways, which could then guide therapy.
Setting
Intensive functional rehabilitation hospital (IFR).
Methods
Five individuals with traumatic SCI and eight controls were recruited. The lower extremity motor score (LEMS), electrical perceptual threshold (EPT) at the S2 dermatome, soleus (SOL) H-reflex, and motor evoked potentials (MEPs) in the tibialis anterior (TA) muscle were assessed during the stay in IFR and in the chronic stage (>6 months post-SCI). Control participants were only assessed once. Feasibility criteria included the absence of adverse events, adequate experimental session duration, and complete dataset gathering. The relationship between electrophysiological data collected in IFR and LEMS in the chronic phase was studied. The admission MRI was used to calculate the maximal spinal cord compression (MSCC).
Results
No adverse events occurred, but a complete dataset could not be collected for all subjects due to set-up configuration limitations and time constraints. EPT measured at IFR correlated with LEMS in the chronic phases (r = −0.67), whereas SOL H/M ratio, H latency, MEPs and MSCC did not.
Conclusions
Adjustments are necessary to implement electrophysiological assessments in an IFR setting. Combining MRI and electrophysiological measures may lead to better assessment of neuronal deficits early after SCI.
Funder
Fonds de Recherche du Québec - Santé
Publisher
Springer Science and Business Media LLC