Abstract
Abstract
Study design
Intervention trial.
Background
Literature remains unclear on possible health benefits and risks assosciated with high intensity exercise for persons with SCI. Elevated oxidative stress levels might influence their ability to exercise at high intensity. We investigated several biomarkers of oxidative stress and antioxidant defense at rest, during and after vigorous exercise among persons with chronic SCI.
Setting
Sunnaas Rehabilitation Hospital, Norway.
Methods
Six participants (five males) with chronic SCI (AIS A, injury level thoracic 2–8, >1 year postinjury) and six matched able-bodied controls performed two maximal arm-cranking tests, with one-three days in between. During the second exercise test, participants performed three bouts with four minutes arm cranking at high intensity (85–95% of peak heart rate (HRpeak)), before they reached maximal effort. Blood and urine biomarkers for oxidative stress and antioxidant levels were collected at six time points at the day of the second exercise test; baseline, at high intensity exercise, at maximal effort, at five, 30 and 60 min post-exercise, and 24 h post exercise.
Results
Participants with SCI had significant lower levels of creatinine (∆16 µmol/L, p = 0.03), α-carotene (∆0.14 nmol/L, p < 0.001) and β-carotene (∆0.51 nmol/L, p = 0.001) at baseline compared to controls. Urine and blood biomarkers of oxidative stress and antioxidant levels showed similar response to vigorous exercise in the SCI and control group.
Conclusions
SCI participants showed similar changes in redox status during high intensity exercise compared to matched able-bodied. SCI participants had lower levels of exogen antioxidants both before, during and after vigorous exercise.
Publisher
Springer Science and Business Media LLC
Reference32 articles.
1. Bauman WA, Spungen AM, Adkins RH, Kemp BJ. Metabolic and endocrine changes in persons aging with spinal cord injury. Assist Technol. 1999;11:88–96.
2. Gorgey AS, Dolbow DR, Dolbow JD, Khalil RK, Castillo C, Gater DR. Effects of spinal cord injury on body composition and metabolic profile - part I. J Spinal Cord Med. 2014;37:693–702.
3. Aksnes AK, Hjeltnes N, Wahlstrom EO, Katz A, Zierath JR, Wallberg-Henriksson H. Intact glucose transport in morphologically altered denervated skeletal muscle from quadriplegic patients. Am J Physiol. 1996;271:E593–600.
4. Biering-Sorensen B, Kristensen IB, Kjaer M, Biering-Sorensen F. Muscle after spinal cord injury. Muscle Nerve. 2009;40:499–519.
5. Chan DC. Mitochondria: dynamic organelles in disease, aging, and development. Cell. 2006;125:1241–52.