Point-to-point associations of drusen and hyperreflective foci volumes with retinal sensitivity in non-exudative age-related macular degeneration

Author:

Reiter Gregor S.ORCID,Bogunovic HrvojeORCID,Schlanitz Ferdinand,Vogl Wolf-DieterORCID,Seeböck Philipp,Ramazanova Dariga,Schmidt-Erfurth UrsulaORCID

Abstract

Abstract Objectives To evaluate the quantitative impact of drusen and hyperreflective foci (HRF) volumes on mesopic retinal sensitivity in non-exudative age-related macular degeneration (AMD). Methods In a standardized follow-up scheme of every three months, retinal sensitivity of patients with early or intermediate AMD was assessed by microperimetry using a custom pattern of 45 stimuli (Nidek MP-3, Gamagori, Japan). Eyes were consecutively scanned using Spectralis SD-OCT (20° × 20°, 1024 × 97 × 496). Fundus photographs obtained by the MP-3 allowed to map the stimuli locations onto the corresponding OCT scans. The volume and mean thickness of drusen and HRF within a circle of 240 µm centred at each stimulus point was determined using automated AI-based image segmentation algorithms. Results 8055 individual stimuli from 179 visits from 51 eyes of 35 consecutive patients were matched with the respective OCT images in a point-to-point manner. The patients mean age was 76.85 ± 6.6 years. Mean retinal sensitivity at baseline was 25.7 dB. 73.47% of all MP-spots covered drusen area and 2.02% of MP-spots covered HRF. A negative association between retinal sensitivity and the volume of underlying drusen (p < 0.001, Estimate −0.991 db/µm3) and HRF volume (p = 0.002, Estimate -5.230 db/µm3) was found. During observation time, no eye showed conversion to advanced AMD. Conclusion A direct correlation between drusen and lower sensitivity of the overlying photoreceptors can be observed. For HRF, a small but significant correlation was shown, which is compromised by their small size. Biomarker quantification using AI-methods allows to determine the impact of sub-clinical features in the progression of AMD.

Publisher

Springer Science and Business Media LLC

Subject

Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3