Nerve fibre organisation in the human optic nerve and chiasm: what do we really know?

Author:

Pawar Pratap R.,Booth Joshua,Neely Andrew,McIlwaine Gawn,Lueck Christian J.ORCID

Abstract

AbstractA recent anatomical study of the human optic chiasm cast doubt on the widespread assumption that nerve fibres travelling in the human optic nerve and chiasm are arranged retinotopically. Accordingly, a scoping literature review was performed to determine what is known about the nerve fibre arrangement in these structures. Meta-analysis suggested that the average number of fibres in each optic nerve was 1.023 million with an inter-individual range of approximately 50% of the mean. Loss of nerve fibres with age (approximately 3,400 fibres/year) could not account for this variability. The review suggested that there might be a retinotopic arrangement of nerve fibres in the orbital portion of the optic nerve but that this arrangement is most likely to be lost posteriorly with a more random distribution of nerve fibres at the chiasm. Limited studies have looked at nerve fibre arrangement in the chiasm. In summary, the chiasm is more ‘H-shaped’ than ‘X-shaped’: nerve fibre crossings occur paracentrally with nerves in the centre of the chiasm travelling coronally and in parallel. There is interaction between crossed and uncrossed fibres which are widely distributed. The review supports the non-existence of Wilbrand’s knee. Considerable further work is required to provide more precise anatomical information, but this review suggests that the assumed preservation of retinotopy in the human optic nerve and chiasm is probably not correct.

Publisher

Springer Science and Business Media LLC

Reference164 articles.

1. Levin LA Topical diagnosis of chiasmal and retrochiasmal disorders. In: Miller NR, Newman NJ, Biousse V, Kerrison JB (eds.). Walsh and Hoyt’s Clinical Neuro-Ophthalmology. 6th edn. (Lippincott Williams & Wilkins, Philadelphia, 2005) 503–74.

2. Lee IH, Miller NR, Zan E, Tavares F, Blitz AM, Sung H, et al. Visual defects in patients with pituitary adenomas: the myth of bitemporal hemianopsia. Am J Roentgenol. 2015;205:W512–18.

3. Hedges TR. Preservation of the upper nasal field in the chiasmal syndrome: an anatomic explanation. Trans Am Ophthalmol Soc. 1969;67:131–41.

4. Kosmorsky GS, Dupps WJ Jr, Drake RL. Nonuniform pressure generation in the optic chiasm may explain bitemporal hemianopsia. Ophthalmology. 2008;115:560–5.

5. Bergland R, Ray BS. The arterial supply of the human optic chiasm. J Neurosurg. 1969;31:327–34.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3