Optical and clinical simulated performance of a new refractive extended depth of focus intraocular lens

Author:

Alarcon AixaORCID,del Aguila Carrasco AntonioORCID,Gounou Franck,Weeber Henk,Cánovas Carmen,Piers Patricia

Abstract

Abstracts Objectives The purpose of this study is to evaluate the optical and expected clinical performance of a new refractive Extended Depth of Focus (EDF) intraocular lens (IOL) designed to maintain a monofocal-like dysphotopsia profile. Methods Simulated visual acuity (sVA) with varying defocus was calculated using the area under the Modulation Transfer Function measured in an average eye model and from computer simulations in eye models with corneal higher-order aberrations. Tolerance to defocus was evaluated using computer simulations of the uncorrected distance sVA under defocus. To evaluate the dysphotopsia profile, halo pictures obtained using an IOL-telescope, as well as simulated images in a realistic eye model under defocus were assessed. The results of the refractive EDF were compared to those of a diffractive EDF of the same platform. Results The refractive EDF IOL provides similar range of vision to the diffractive EDF IOL with the same distance, and similar intermediate and near sVA. The refractive EDF IOL provides the same tolerance to hyperopia as the diffractive EDF but more tolerance to myopia. Halo pictures and simulations showed that the refractive EDF provides comparable dysphotopsia profile to the monofocal IOL and better than the diffractive EDF. Conclusions The results of this preclinical study in clinically relevant conditions show that the new refractive EDF IOL is expected to provide similar range of vision to the diffractive IOL of the same platform and higher tolerance to refractive errors. The refractive EDF provides a dysphotopsia profile that is better than the diffractive EDF and comparable to that of the monofocal IOL, also in the presence of residual refractive errors.

Funder

Johnson and Johnson Vision

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3