Segmentation of macular neovascularization and leakage in fluorescein angiography images in neovascular age-related macular degeneration using deep learning

Author:

Holomcik David,Seeböck Philipp,Gerendas Bianca S.ORCID,Mylonas Georgios,Najeeb Bilal Haj,Schmidt-Erfurth UrsulaORCID,Deak Gabor

Abstract

Abstract Background/objectives We aim to develop an objective fully automated Artificial intelligence (AI) algorithm for MNV lesion size and leakage area segmentation on fluorescein angiography (FA) in patients with neovascular age-related macular degeneration (nAMD). Subjects/methods Two FA image datasets collected form large prospective multicentre trials consisting of 4710 images from 513 patients and 4558 images from 514 patients were used to develop and evaluate a deep learning-based algorithm to detect CNV lesion size and leakage area automatically. Manual segmentation of was performed by certified FA graders of the Vienna Reading Center. Precision, Recall and F1 score between AI predictions and manual annotations were computed. In addition, two masked retina experts conducted a clinical-applicability evaluation, comparing the quality of AI based and manual segmentations. Results For CNV lesion size and leakage area segmentation, we obtained F1 scores of 0.73 and 0.65, respectively. Expert review resulted in a slight preference for the automated segmentations in both datasets. The quality of automated segmentations was slightly more often judged as good compared to manual annotations. Conclusions CNV lesion size and leakage area can be segmented by our automated model at human-level performance, its output being well-accepted during clinical applicability testing. The results provide proof-of-concept that an automated deep learning approach can improve efficacy of objective biomarker analysis in FA images and will be well-suited for clinical application.

Publisher

Springer Science and Business Media LLC

Subject

Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3