Abstract
AbstractPolar reactive organometallic species have been key reagents in synthesis for more than a century. Stereodefined 1,2-dimetallated alkenes offer promising synthetic utility; however, few methods are available for their preparation due to their relatively low stability. Here we report the reductive anti-1,2-dimetallation of alkynes to stereoselectively generate trans-1,2-dimagnesio- and 1,2-dialuminoalkenes, which are stable and have been demonstrated in organic synthesis. These stereodefined 1,2-dimetallated alkenes are prepared through the use of a sodium dispersion as a reducing agent, and organomagnesium and organoaluminium halides as reduction-resistant electrophiles. Highly nucleophilic 1,2-dimagnesioalkenes serve as dual Grignard reagents and have been demonstrated to react with various electrophiles to afford anti-difunctionalized alkenes. The 1,2-dialuminoalkenes react with paraformaldehyde with dearomatization of the aryl moieties to form the corresponding dearomatized 1,4-diols, with the overall reaction being regarded as alkynyl-directed dearomatization of arenes. X-ray crystallographic analysis further supports the formation of trans-1,2-dimagnesio- and 1,2-dialuminoalkenes, with computational studies providing insight into the mechanism of dearomative difunctionalization.
Funder
MEXT | Japan Society for the Promotion of Science
MEXT | JST | Core Research for Evolutional Science and Technology
The Asahi Glass Foundation
Publisher
Springer Science and Business Media LLC
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献