Optimal thermodynamic conditions to minimize kinetic by-products in aqueous materials synthesis

Author:

Wang ZherenORCID,Sun YingzhiORCID,Cruse KevinORCID,Zeng YanORCID,Fei YuxingORCID,Liu ZexuanORCID,Shangguan JunyiORCID,Byeon Young-WoonORCID,Jun KyuJungORCID,He TanjinORCID,Sun WenhaoORCID,Ceder GerbrandORCID

Abstract

AbstractPhase diagrams offer substantial predictive power for materials synthesis by identifying the stability regions of target phases. However, thermodynamic phase diagrams do not offer explicit information regarding the kinetic competitiveness of undesired by-product phases. Here we propose a quantitative and computable thermodynamic metric to identify synthesis conditions under which the propensity to form kinetically competing by-products is minimized. We hypothesize that thermodynamic competition is minimized when the difference in free energy between a target phase and the minimal energy of all other competing phases is maximized. We validate this hypothesis for aqueous materials synthesis through two empirical approaches: first, by analysing 331 aqueous synthesis recipes text-mined from the literature; and second, by systematic experimental synthesis of LiIn(IO3)4 and LiFePO4 across a wide range of aqueous electrochemical conditions. Our results show that even for synthesis conditions that are within the stability region of a thermodynamic Pourbaix diagram, phase-pure synthesis occurs only when thermodynamic competition with undesired phases is minimized.

Funder

National Science Foundation

U.S. Department of Energy

DOE | Laboratory Directed Research and Development

DOE | Office of Energy Efficiency & Renewable Energy | Vehicle Technologies Office

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3