Retinopathy of prematurity protection conferred by uteroplacental insufficiency through erythropoietin signaling in an experimental Murine Model

Author:

Fung Camille,Cung Thaonhi,Nelson Caroline,Wang Haibo,Bretz Colin,Ramshekar Aniket,Brown Ashley,Stoddard Gregory J.,Hartnett M. Elizabeth

Abstract

Abstract Background Recent clinical studies suggest that preeclampsia, characterized by uteroplacental insufficiency (UPI) and infant intrauterine growth restriction (IUGR), may be protective against retinopathy of prematurity (ROP) in preterm infants. Experimental models of UPI/IUGR have found an association of erythropoietin (EPO) with less severe oxygen-induced retinopathy (OIR); however, it is unclear if EPO/EPO receptor (EPOR) signaling was involved. We hypothesized that maternal UPI and resultant infant IUGR would protect against features of ROP through EPO/EPOR signaling. Methods We compared transgenic mice with hypoactive EPOR signaling (hWtEPOR) to littermate wild-type mice (mWtEpoR) in a novel combined model of IUGR and ROP. Thromboxane A2 (TXA2) was infused into pregnant C57Bl/6J dams to produce UPI/IUGR; postnatal pups and their foster dams were subjected to a murine OIR model. Results Following hyperoxia, hematocrits were similar between littermate wild-type (mWtEpoR) TXA2/OIR and vehicle/OIR pups. mWtEpoR TXA2/OIR had increased serum EPO, retinal EPO and VEGF, and decreased avascular retinal area (AVA) compared to vehicle/OIR pups. In comparison to the mWtEpoR TXA2/OIR pups, AVA was not reduced in hWtEPOR TXA2/OIR pups. Conclusion Our findings provide biologic evidence that UPI/OIR-induced endogenous EPOR signaling confers protection against hyperoxia-induced vascular damage that may be related to pathophysiology in ROP. Impact Maternal preeclampsia and infant growth restriction confer retinovascular protection against high oxygen-induced damage through endogenous erythropoietin signaling.

Publisher

Springer Science and Business Media LLC

Subject

Pediatrics, Perinatology and Child Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Retinopathy of Prematurity;Reference Module in Neuroscience and Biobehavioral Psychology;2024

2. Pathophysiology of Retinopathy of Prematurity;Annual Review of Vision Science;2023-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3