Altered brain metabolite concentration and delayed neurodevelopment in preterm neonates

Author:

Tomiyasu Moyoko,Shibasaki Jun,Kawaguchi Hiroshi,Enokizono Mikako,Toyoshima Katsuaki,Obata Takayuki,Aida Noriko

Abstract

Abstract Background A very-low-birth-weight (VLBW) preterm infants is associated with an increased risk of impaired neurodevelopmental outcomes. In this study, we investigated how neonatal brain metabolite concentrations changed with postmenstrual age and examined the relationship between changes in concentration (slopes) and neurodevelopmental level at 3–4 years. Methods We retrospectively examined 108 VLBW preterm infants who had brain single-voxel magnetic resonance spectroscopy at 34–42 weeks’ postmenstrual age. Neurodevelopment was assessed using a developmental test, and subjects were classified into four groups: developmental quotient <70, 70–84, 85–100, and >100. One-way analyses of covariance and multiple-comparison post hoc tests were used to compare slopes. Results We observed correlations between postmenstrual age and the concentrations of N-acetylaspartate and N-acetylaspartylglutamate (tNAA) (p < 0.001); creatine and phosphocreatine (p < 0.001); glutamate and glutamine (p < 0.001); and myo-inositol (p = 0.049) in the deep gray matter; and tNAA (p < 0.001) in the centrum semiovale. A significant interaction was noted among the tNAA slopes of the four groups in the deep gray matter (p = 0.022), and we found a significant difference between the <70 and 85–100 groups (post hoc, p = 0.024). Conclusions In VLBW preterm infants, the slopes of tNAA concentrations (adjusted for postmenstrual age) were associated with lower developmental quotients at 3–4 years. Impact In very-low-birth-weight preterm-born infants, a slower increase in tNAA brain concentration at term-equivalent age was associated with poorer developmental outcomes at 3–4 years. The increase in tNAA concentration in very-low-birth-weight infants was slower in poorer developmental outcomes, and changes in tNAA concentration appeared to be more critical than changes in tCho for predicting developmental delays. While tNAA/tCho ratios were previously used to examine the correlation with neurodevelopment at 1–2 years, we used brain metabolite concentrations.

Publisher

Springer Science and Business Media LLC

Subject

Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3