Control of breathing in preterm infants on incubator oxygen or nasal cannula oxygen

Author:

Travers Colm P.,Chahine Rouba,Nakhmani Arie,Aban Inmaculada,Carlo Waldemar A.,Ambalavanan Namasivayam

Abstract

Abstract Background Incubator oxygen may improve respiratory stability in preterm infants compared with nasal cannula oxygen. Methods Single center randomized trial of infants <29 weeks’ gestation on supplemental oxygen at ≥32 weeks’ postmenstrual age. Infants were crossed-over every 24 hours for 96 hours between incubator oxygen and nasal cannula ≤1.0 L/kg/min. We measured episodes of intermittent hypoxemia (oxygen saturations (SpO2) < 85% ≥10 seconds), bradycardia, cerebral and abdominal hypoxemia, and end-tidal carbon dioxide. Results We enrolled 25 infants with a gestational age of 26 weeks 4 days±15 days (mean ± SD) and birth weight 805 ± 202 grams. There were no differences in episodes of intermittent hypoxemia, bradycardia, or cerebral hypoxemia between groups. There were fewer episodes of abdominal hypoxemia <40% ≥10 seconds with incubator oxygen compared with nasal cannula (132 ± 130 versus 158 ± 125; p < 0.01). Time with SpO2 < 85% and abdominal hypoxemia was lower among infants on incubator oxygen. Carbon dioxide values were higher while on incubator oxygen (41 ± 11 versus 36 ± 10 mmHg; p < 0.02). Conclusion There was no difference in intermittent hypoxemia between incubator and nasal cannula oxygen among preterm infants on supplemental oxygen. Infants had higher levels of carbon dioxide while on incubator oxygen, which may have improved some measures of respiratory stability. ClincalTrials.gov identifiers NCT03333174 and NCT03174301. Impact Statement In this randomized cross-over trial of preterm infants on supplemental oxygen, incubator oxygen did not decrease episodes of intermittent hypoxemia compared with nasal cannula oxygen. Incubator oxygen reduced time with oxygen saturations less than 85%, reduced abdominal hypoxemia, and increased carbon dioxide levels. Differences in measures of respiratory stability on incubator oxygen may be partly due to higher carbon dioxide levels compared with nasal cannula oxygen. The mode of supplemental oxygen administration may impact control of breathing in preterm infants through its effect on hypopharyngeal oxygen stability and carbon dioxide levels.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3