Functional morphometry: non-invasive estimation of the alveolar surface area in extremely preterm infants

Author:

Williams Emma E.,Gareth Jones J.,McCurnin Donald,Rüdiger Mario,Nanjundappa Mahesh,Greenough Anne,Dassios Theodore

Abstract

Abstract Background The main pathophysiologic characteristic of chronic respiratory disease following extremely premature birth is arrested alveolar growth, which translates to a smaller alveolar surface area (SA). We aimed to use non-invasive measurements to estimate the SA in extremely preterm infants. Methods Paired measurements of the fraction of inspired oxygen and transcutaneous oxygen saturation were used to calculate the ventilation/perfusion ratio, which was translated to SA using Fick’s law of diffusion. The SA was then adjusted using volumetric capnography. Results Thirty infants with a median (range) gestational age of 26.3 (22.9–27.9) weeks were studied. The median (range) adjusted SA was 647.9 (316.4–902.7) cm2. The adjusted SA was lower in the infants who required home oxygen [637.7 (323.5–837.5) cm2] compared to those who did not [799.1 (444.2–902.7) cm2, p = 0.016]. In predicting the need for supplemental home oxygen, the adjusted SA had an area under the receiver operator characteristic curve of 0.815 (p = 0.017). An adjusted SA ≥688.6 cm2 had 86% sensitivity and 77% specificity in predicting the need for supplemental home oxygen. Conclusions The alveolar surface area can be estimated non-invasively in extremely preterm infants. The adjusted alveolar surface area has the potential to predict the subsequent need for discharge home on supplemental oxygen. Impact We describe a novel biomarker of respiratory disease following extremely preterm birth. The adjusted alveolar surface area index was derived by non-invasive measurements of the ventilation/perfusion ratio and adjusted by concurrent measurements of volumetric capnography. The adjusted alveolar surface area was markedly reduced in extremely preterm infants studied at 7 days of life and could predict the need for discharge home on supplemental oxygen. This method could be used at the bedside to estimate the alveolar surface area and provide an index of the severity of lung disease, and assist in monitoring, clinical management and prognosis.

Publisher

Springer Science and Business Media LLC

Subject

Pediatrics, Perinatology and Child Health

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3