Metabolic-endocrine disruption due to preterm birth impacts growth, body composition, and neonatal outcome

Author:

Möllers Lea Sophie,Yousuf Efrah I.,Hamatschek Constanze,Morrison Katherine M.,Hermanussen Michael,Fusch Christoph,Rochow Niels

Abstract

Abstract Despite optimized nutrition, preterm-born infants grow slowly and tend to over-accrete body fat. We hypothesize that the premature dissociation of the maternal–placental–fetal unit disrupts the maintenance of physiological endocrine function in the fetus, which has severe consequences for postnatal development. This review highlights the endocrine interactions of the maternal–placental–fetal unit and the early perinatal period in both preterm and term infants. We report on hormonal levels (including tissue, thyroid, adrenal, pancreatic, pituitary, and placental hormones) and nutritional supply and their impact on infant body composition. The data suggest that the premature dissociation of the maternal–placental–fetal unit leads to a clinical picture similar to panhypopituitarism. Further, we describe how the premature withdrawal of the maternal–placental unit, neonatal morbidities, and perinatal stress can cause differences in the levels of growth-promoting hormones, particularly insulin-like growth factors (IGF). In combination with the endocrine disruption that occurs following dissociation of the maternal–placental–fetal unit, the premature adaptation to the extrauterine environment leads to early and fast accretion of fat mass in an immature body. In addition, we report on interventional studies that have aimed to compensate for hormonal deficiencies in infants born preterm through IGF therapy, resulting in improved neonatal morbidity and growth. Impact Preterm birth prematurely dissociates the maternal–placental–fetal unit and disrupts the metabolic-endocrine maintenance of the immature fetus with serious consequences for growth, body composition, and neonatal outcomes. The preterm metabolic-endocrine disruption induces symptoms resembling anterior pituitary failure (panhypopituitarism) with low levels of IGF-1, excessive postnatal fat mass accretion, poor longitudinal growth, and failure to thrive. Appropriate gestational age-adapted nutrition alone seems insufficient for the achievement of optimal growth of preterm infants. Preliminary results from interventional studies show promising effects of early IGF-1 supplementation on postnatal development and neonatal outcomes.

Publisher

Springer Science and Business Media LLC

Subject

Pediatrics, Perinatology and Child Health

Reference108 articles.

1. American Academy of Pediatrics. Committee on Nutrition. Pediatric Nutrition 7th edn (American Academy of Pediatrics, 2013).

2. Hamatschek, C. et al. Fat and fat-free mass of preterm and term infants from birth to six months: a review of current evidence. Nutrients 12, 288 (2020).

3. Al-Theyab, N. A., Donovan, T. J., Eiby, Y. A., Colditz, P. B. & Lingwood, B. E. Fat trajectory after birth in very preterm infants mimics healthy term infants. Pediatr. Obes. 14, e12472 (2019).

4. Algotar, A. et al. Unique patterns of body composition and anthropometric measurements during maturation in neonatal intensive care unit neonates: opportunities for modifying nutritional therapy and influencing clinical outcomes. J. Parenter. Enter. Nutr. 42, 231–238 (2018).

5. Johnson, M. J., Wootton, S. A., Leaf, A. A. & Jackson, A. A. Preterm birth and body composition at term equivalent age: a systematic review and meta-analysis. Pediatrics 130, E640–E649 (2012).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3