Pharmacometric approach to assist dosage regimen design in neonates undergoing therapeutic hypothermia

Author:

Matcha Saikumar,Raj Elstin Anbu,Mahadevan Ramya,Raju Arun Prasath,Rajesh V,Lewis Leslie Edward,Mallayasamy Surulivelrajan

Abstract

Abstract Background Therapeutic hypothermia (TH) is the treatment of choice for neonates diagnosed with perinatal asphyxia (PA). Dosing recommendations of various therapeutic agents including antimicrobials were not specifically available for the neonates undergoing TH. Methods A systematic search methodology was used to identify pharmacokinetic (PK) studies of antimicrobials during TH. Antimicrobials with multiple PK studies were identified to create a generalizable PK model. Pharmacometric simulations were performed using the PUMAS software platform to reproduce the results of published studies. A suitable model that could reproduce the results of all other published studies was identified. With the help of a generalizable model, an optimal dosage regimen was designed considering the important covariates of the identified model. Results With the systematic search, only gentamicin had multiple PK reports during TH. A generalizable model was identified and the model predictions could match the reported/observed concentrations of publications. Birth weight and serum creatinine were the significant covariates influencing the PK of gentamicin in neonates. A dosage nomogram was designed using pharmacometric simulations to maintain gentamicin concentrations below 10 μg/mL at peak and below 2 μg/mL at trough. Conclusions A generalizable PK model for gentamicin during TH in neonates was identified. Using the model, a dosing nomogram for gentamicin was designed. Impact Dosing guidelines for antimicrobials during TH in neonates is lacking. This is the first study to identify the generalizable model for gentamicin during TH in neonates. Nomogram, proposed in the study, will aid the clinicians to individualize gentamicin dosing regimen for neonates considering the birth weight and serum creatinine.

Publisher

Springer Science and Business Media LLC

Subject

Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3