Falls in oxygen saturations accompany electrographic seizures in term neonates: an observational study

Author:

Wertheim DavidORCID,Kage Anup C.,Lancoma-Malcolm Ivone,Francia Caroline,Yoong Michael,Shah Divyen K.ORCID

Abstract

Abstract Background Effective seizure detection is important however, clinical signs of seizure activity may be subtle in neonates. This study aimed to systematically investigate SpO2 and respiratory pattern changes associated with EEG seizures in term-born neonates. Method An observational study in term neonates at risk of seizures admitted to a single tertiary level neonatal intensive care unit. Synchronised high-resolution physiological data (ECG, pulse oximetry, respiration) and EEG/amplitude-integrated EEG (aEEG) monitoring were recorded. Sections of traces with evidence of clear EEG seizure activity were compared with physiological data recorded at the same time. Results 22/44 (50%) neonates who had aEEG monitoring were noted to have electrographic seizures. Physiologic download measurements were available for 11 of these neonates. In nine of these, an acute drop in oxygen saturation (SpO2) of at least 5% was noted in at least one seizure. Accompanying apnoeas were noted in three neonates. Conclusion Acute decreases in SpO2 were seen in term neonates associated with seizures and these were not always accompanied by an apnoeic episode. Physiologic download in association with EEG monitoring may assist in improving seizure detection. Unexplained drops in SpO2 could indicate further investigation for possible seizures in at-risk neonates. Impact A decrease in blood oxygen saturation (SpO2) associated with EEG seizures can occur in term infants with HIE or perinatal stroke. Drops in SpO2 associated with EEG seizures in term infants with HIE or stroke may occur in the absence of apnoeas. Unexplained acute falls in SpO2 in sick neonates may suggest possible seizures. Drops in SpO2 associated with seizures in term infants can occur over less than 3 minutes. Physiological monitoring alongside EEG monitoring could help to improve seizure detection.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3