Targeting ocean conservation outcomes through threat reduction

Author:

Turner Joseph A.,Starkey Malcolm,Dulvy Nicholas K.,Hawkins Frank,Mair Louise,Serckx Adeline,Brooks Thomas,Polidoro Beth,Butchart Stuart H. M.,Carpenter Kent,Epps Minna,Jabado Rima W.,Macfarlane Nicholas B. W.,Bennun Leon

Abstract

AbstractNations have committed to reductions in the global rate of species extinctions through the Sustainable Development Goals 14 and 15, for ocean and terrestrial species, respectively. Biodiversity loss is worsening despite rapid growth in the number and extent of protected areas, both at sea and on land. Resolving this requires targeting the locations and actions that will deliver positive conservation outcomes for biodiversity. The Species Threat Abatement and Restoration (STAR) metric, developed by a consortium of experts, quantifies the contributions that abating threats and restoring habitats in specific places offer towards reducing extinction risk based on the IUCN Red List of Threatened SpeciesTM. STAR is now recommended as an appropriate metric by recent disclosure frameworks for companies to report their impacts on nature and STAR has seen widespread uptake within the private sector. However, it is currently only available for the terrestrial realm. We extend the coverage of the threat abatement component of the STAR metric (START), used to identify locations where positive interventions could make a large contribution to reducing global species extinction risk and where developments that increase threats to species should be mitigated, to the marine realm for 1646 marine species. Reducing unsustainable fishing provides the greatest opportunity to lower species extinction risk, comprising 43% of the marine START score. Three-quarters (75%) of the global marine START score falls entirely outside the boundaries of protected areas and only 2.7% falls within no-take protected areas. The STAR metric can be used both to guide protected area expansion and to target other actions, such as establishment and enforcement of fishing limits, to recover biodiversity.

Funder

Discovery and Accelerator grants from Natural Science and Engineering Research Council and the Canada Research Chair program

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3