Abstract
AbstractCigarette smoking has a major impact on global health and morbidity, and positron emission tomographic research has provided evidence for reduced inflammation in the human brain associated with cigarette smoking. Given the consequences of inflammatory dysfunction for health, the question of whether cigarette smoking affects neuroinflammation warrants further investigation. The goal of this project therefore was to validate and extend evidence of hypoinflammation related to smoking, and to examine the potential contribution of inflammation to clinical features of smoking. Using magnetic resonance spectroscopy, we measured levels of neurometabolites that are putative neuroinflammatory markers.N-acetyl compounds (N-acetylaspartate +N-acetylaspartylglutamate), glutamate, creatine, choline-compounds (phosphocholine + glycerophosphocholine), andmyo-inositol, have all been linked to neuroinflammation, but they have not been examined as such with respect to smoking. We tested whether people who smoke cigarettes have brain levels of these metabolites consistent with decreased neuroinflammation, and whether clinical features of smoking are associated with levels of these metabolites. The dorsal anterior cingulate cortex was chosen as the region-of-interest because of previous evidence linking it to smoking and related states. Fifty-four adults who smoked daily maintained overnight smoking abstinence before testing and were compared with 37 nonsmoking participants. Among the smoking participants, we tested for associations of metabolite levels with tobacco dependence, smoking history, craving, and withdrawal. Levels ofN-acetyl compounds and glutamate were higher, whereas levels of creatine and choline compounds were lower in the smoking group as compared with the nonsmoking group. In the smoking group, glutamate and creatine levels correlated negatively with tobacco dependence, and creatine correlated negatively with lifetime smoking, but none of the metabolite levels correlated with craving or withdrawal. The findings indicate a link between smoking and a hypoinflammatory state in the brain, specifically in the dorsal anterior cingulate cortex. Smoking may thereby increase vulnerability to infection and brain injury.
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Psychiatry and Mental health,Molecular Biology
Reference93 articles.
1. Murray CJ, Aravkin AY, Zheng P, Abbafati C, Abbas KM, Abbasi-Kangevari M et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020; 396:1223-49.
2. US Department of Health and Human Services. The Health Consequences of Smoking–50 Years of Progress: A Report of the Surgeon General. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health; 2014.
3. Caliri AW, Tommasi S, Besaratinia A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutat Res Rev Mutation Res. 2021; 787: epub ahead of print 11 January 2021; https://doi.org/10.1016/j.mrrev.2021.108365.
4. DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem. 2016;139:136–53.
5. Reuther WJ, Brennan PA. Is nicotine still the bad guy? Summary of the effects of smoking on patients with head and neck cancer in the postoperative period and the uses of nicotine replacement therapy in these patients. Br J Oral Maxillofac Surg. 2014;52:102–105.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献