Abstract
AbstractPropionic acidemia (PA) is an autosomal recessive condition (OMIM #606054), wherein pathogenic variants in PCCA and PCCB impair the activity of propionyl-CoA carboxylase. PA is associated with neurodevelopmental disorders, including intellectual disability (ID) and autism spectrum disorder (ASD); however, the correlates and mechanisms of these outcomes remain unknown. Using data from a subset of participants with PA enrolled in a dedicated natural history study (n = 33), we explored associations between neurodevelopmental phenotypes and laboratory parameters. Twenty (61%) participants received an ID diagnosis, and 12 of the 31 (39%) who were fully evaluated received the diagnosis of ASD. A diagnosis of ID, lower full-scale IQ (sample mean = 65 ± 26), and lower adaptive behavior composite scores (sample mean = 67 ± 23) were associated with several biomarkers. Higher concentrations of plasma propionylcarnitine, plasma total 2-methylcitrate, serum erythropoietin, and mitochondrial biomarkers plasma FGF21 and GDF15 were associated with a more severe ID profile. Reduced 1-13C-propionate oxidative capacity and decreased levels of plasma and urinary glutamine were also associated with a more severe ID profile. Only two parameters, increased serum erythropoietin and decreased plasma glutamine, were associated with ASD. Plasma glycine, one of the defining features of PA, was not meaningfully associated with either ID or ASD. Thus, while both ID and ASD were commonly observed in our PA cohort, only ID was robustly associated with metabolic parameters. Our results suggest that disease severity and associated mitochondrial dysfunction may play a role in CNS complications of PA and identify potential biomarkers and candidate surrogate endpoints.
Funder
U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute
U.S. Department of Health & Human Services | National Institutes of Health
Publisher
Springer Science and Business Media LLC
Reference57 articles.
1. Shchelochkov OA, Carrillo N, Venditti C. Propionic Acidemia. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, et al. (eds). GeneReviews(R). University of Washington, Seattle: Seattle (WA), (1993).
2. Sutton VR, Chapman KA, Gropman AL, MacLeod E, Stagni K, Summar ML, et al. Chronic management and health supervision of individuals with propionic acidemia. Mol Genet Metab. 2012;105:26–33.
3. Kölker S, Valayannopoulos V, Burlina AB, Sykut-Cegielska J, Wijburg FA, Teles EL, et al. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 2: the evolving clinical phenotype. J Inherit Metab Dis. 2015;38:1059–74.
4. Shchelochkov OA, Manoli I, Juneau P, Sloan JL, Ferry S, Myles J, et al. Severity modeling of propionic acidemia using clinical and laboratory biomarkers. Genet Med. 2021;23:1534–42.
5. Shchelochkov OA, Manoli I, Sloan JL, Ferry S, Pass A, Van Ryzin C, et al. Chronic kidney disease in propionic acidemia. Genet Med. 2019;21:2830–5.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献