Using brain structural neuroimaging measures to predict psychosis onset for individuals at clinical high-risk

Author:

Zhu Yinghan,Maikusa NorihideORCID,Radua Joaquim,Sämann Philipp G.ORCID,Fusar-Poli PaoloORCID,Agartz Ingrid,Andreassen Ole A.ORCID,Bachman Peter,Baeza Inmaculada,Chen XiaogangORCID,Choi Sunah,Corcoran Cheryl M.ORCID,Ebdrup Bjørn H.ORCID,Fortea AdrianaORCID,Garani Ranjini RG.,Glenthøj Birte Yding,Glenthøj Louise Birkedal,Haas Shalaila S.ORCID,Hamilton Holly K.,Hayes Rebecca A.,He Ying,Heekeren Karsten,Kasai KiyotoORCID,Katagiri Naoyuki,Kim MinahORCID,Kristensen Tina D.ORCID,Kwon Jun SooORCID,Lawrie Stephen M.ORCID,Lebedeva Irina,Lee JimmyORCID,Loewy Rachel L.,Mathalon Daniel H.ORCID,McGuire PhilipORCID,Mizrahi RominaORCID,Mizuno Masafumi,Møller PaulORCID,Nemoto TakahiroORCID,Nordholm Dorte,Omelchenko Maria A.,Raghava Jayachandra M.ORCID,Røssberg Jan I.,Rössler Wulf,Salisbury Dean F.,Sasabayashi DaikiORCID,Smigielski LukaszORCID,Sugranyes GiselaORCID,Takahashi TsutomuORCID,Tamnes Christian K.ORCID,Tang JinsongORCID,Theodoridou AnastasiaORCID,Tomyshev Alexander S.,Uhlhaas Peter J.ORCID,Værnes Tor G.,van Amelsvoort Therese A. M. J.,Waltz James A.ORCID,Westlye Lars T.ORCID,Zhou Juan H.ORCID,Thompson Paul M.,Hernaus Dennis,Jalbrzikowski MariaORCID,Koike ShinsukeORCID, ,Allen Paul,Baldwin Helen,Catalano Sabrina,Chee Michael W. L.,Cho Kang Ik K.,de Haan Lieuwe,Horton Leslie E.,Klaunig Mallory J.,Bin Kwak Yoo,Ma Xiaoqian,Nordentoft Merete,Ouyang Lijun,Pariente Jose C.,Resch Franz,Schiffman Jason,Sørensen Mikkel E.,Suzuki Michio,Vinogradov Sophia,Wenneberg Christina,Yamasue Hidenori,Yuan Liu

Abstract

AbstractMachine learning approaches using structural magnetic resonance imaging (sMRI) can be informative for disease classification, although their ability to predict psychosis is largely unknown. We created a model with individuals at CHR who developed psychosis later (CHR-PS+) from healthy controls (HCs) that can differentiate each other. We also evaluated whether we could distinguish CHR-PS+ individuals from those who did not develop psychosis later (CHR-PS-) and those with uncertain follow-up status (CHR-UNK). T1-weighted structural brain MRI scans from 1165 individuals at CHR (CHR-PS+, n = 144; CHR-PS-, n = 793; and CHR-UNK, n = 228), and 1029 HCs, were obtained from 21 sites. We used ComBat to harmonize measures of subcortical volume, cortical thickness and surface area data and corrected for non-linear effects of age and sex using a general additive model. CHR-PS+ (n = 120) and HC (n = 799) data from 20 sites served as a training dataset, which we used to build a classifier. The remaining samples were used external validation datasets to evaluate classifier performance (test, independent confirmatory, and independent group [CHR-PS- and CHR-UNK] datasets). The accuracy of the classifier on the training and independent confirmatory datasets was 85% and 73% respectively. Regional cortical surface area measures-including those from the right superior frontal, right superior temporal, and bilateral insular cortices strongly contributed to classifying CHR-PS+ from HC. CHR-PS- and CHR-UNK individuals were more likely to be classified as HC compared to CHR-PS+ (classification rate to HC: CHR-PS+, 30%; CHR-PS-, 73%; CHR-UNK, 80%). We used multisite sMRI to train a classifier to predict psychosis onset in CHR individuals, and it showed promise predicting CHR-PS+ in an independent sample. The results suggest that when considering adolescent brain development, baseline MRI scans for CHR individuals may be helpful to identify their prognosis. Future prospective studies are required about whether the classifier could be actually helpful in the clinical settings.

Funder

Japan Agency for Medical Research and Development

Takeda Medical Research Foundation

SENSHIN Medical Research Foundation

MEXT | Japan Society for the Promotion of Science

JST Moonshot R&

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3