Abstract
AbstractThe amygdala, one of the most studied brain structures, integrates brain-wide heterogeneous inputs and governs multidimensional outputs to control diverse behaviors central to survival, yet how amygdalar input-output neuronal circuits are organized remains unclear. Using a simplified cell-type- and projection-specific retrograde transsynaptic tracing technique, we scrutinized brain-wide afferent inputs of four major output neuronal groups in the amygdalar basolateral complex (BLA) that project to the bed nucleus of the stria terminals (BNST), ventral hippocampus (vHPC), medial prefrontal cortex (mPFC) and nucleus accumbens (NAc), respectively. Brain-wide input-output quantitative analysis unveils that BLA efferent neurons receive a diverse array of afferents with varied input weights and predominant contextual representation. Notably, the afferents received by BNST-, vHPC-, mPFC- and NAc-projecting BLA neurons exhibit virtually identical origins and input weights. These results indicate that the organization of amygdalar BLA input-output neuronal circuits follows the input-dependent and output-independent principles, ideal for integrating brain-wide diverse afferent stimuli to control parallel efferent actions. The data provide the objective basis for improving the virtual reality exposure therapy for anxiety disorders and validate the simplified cell-type- and projection-specific retrograde transsynaptic tracing method.
Funder
U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Psychiatry and Mental health,Molecular Biology
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献