Longitudinal trajectories of cortical development in 22q11.2 copy number variants and typically developing controls

Author:

Jalbrzikowski Maria,Lin Amy,Vajdi Ariana,Grigoryan Vardui,Kushan LeilaORCID,Ching Christopher R. K.,Schleifer Charles,Hayes Rebecca A.,Chu Stephanie A.,Sugar Catherine A.ORCID,Forsyth Jennifer K.,Bearden Carrie E.ORCID

Abstract

AbstractProbing naturally-occurring, reciprocal genomic copy number variations (CNVs) may help us understand mechanisms that underlie deviations from typical brain development. Cross-sectional studies have identified prominent reductions in cortical surface area (SA) and increased cortical thickness (CT) in 22q11.2 deletion carriers (22qDel), with the opposite pattern in duplication carriers (22qDup), but the longitudinal trajectories of these anomalies—and their relationship to clinical symptomatology—are unknown. Here, we examined neuroanatomic changes within a longitudinal cohort of 261 22q11.2 CNV carriers and demographically-matched typically developing (TD) controls (84 22qDel, 34 22qDup, and 143 TD; mean age 18.35, ±10.67 years; 50.47% female). A total of 431 magnetic resonance imaging scans (164 22qDel, 59 22qDup, and 208 TD control scans; mean interscan interval = 20.27 months) were examined. Longitudinal FreeSurfer analysis pipelines were used to parcellate the cortex and calculate average CT and SA for each region. First, general additive mixed models (GAMMs) were used to identify regions with between-group differences in developmental trajectories. Secondly, we investigated whether these trajectories were associated with clinical outcomes. Developmental trajectories of CT were more protracted in 22qDel relative to TD and 22qDup. 22qDup failed to show normative age-related SA decreases. 22qDel individuals with psychosis spectrum symptoms showed two distinct periods of altered CT trajectories relative to 22qDel without psychotic symptoms. In contrast, 22q11.2 CNV carriers with autism spectrum diagnoses showed early alterations in SA trajectories. Collectively, these results provide new insights into altered neurodevelopment in 22q11.2 CNV carriers, which may shed light on neural mechanisms underlying distinct clinical outcomes.

Funder

U.S. Department of Health & Human Services | NIH | National Institute of Mental Health

Brain and Behavior Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Psychiatry and Mental health,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3