Sniffing oxytocin: Nose to brain or nose to blood?

Author:

Yao ShuxiaORCID,Chen Yuanshu,Zhuang QianORCID,Zhang Yingying,Lan ChunmeiORCID,Zhu SiyuORCID,Becker BenjaminORCID,Kendrick Keith M.ORCID

Abstract

AbstractIn recent years ample studies have reported that intranasal administration of the neuropeptide oxytocin can facilitate social motivation and cognition in healthy and clinical populations. However, it is still unclear how effects are mediated since intranasally administered oxytocin can both directly enter the brain (nose to brain) and increase peripheral vascular concentrations (nose to blood). The relative functional contributions of these routes are not established and have received insufficient attention in the field. The current study used vasoconstrictor pretreatment to prevent intranasal oxytocin (24 IU) from increasing peripheral concentrations and measured effects on both resting-state neural (electroencephalography) and physiological responses (electrocardiogram, electrogastrogram and skin conductance). Results demonstrated that intranasal oxytocin alone produced robust and widespread increases of delta-beta cross-frequency coupling (CFC) from 30 min post-treatment but did not influence peripheral physiological measures. As predicted, vasoconstrictor pretreatment greatly reduced the normal increase in peripheral oxytocin concentrations and, importantly, abolished the majority of intranasal oxytocin effects on delta-beta CFC. Furthermore, time-dependent positive correlations were found between increases in plasma oxytocin concentrations and corresponding increases in delta-beta CFC following oxytocin treatment alone. Our findings suggest a critical role of peripheral vasculature-mediated routes on neural effects of exogenous oxytocin administration with important translational implications for its use as an intervention in psychiatric disorders.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Psychiatry and Mental health,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3