Corticolimbic DCC gene co-expression networks as predictors of impulsivity in children

Author:

Restrepo-Lozano Jose M.ORCID,Pokhvisneva Irina,Wang Zihan,Patel Sachin,Meaney Michael J.,Silveira Patricia P.ORCID,Flores CeciliaORCID

Abstract

AbstractInhibitory control deficits are prevalent in multiple neuropsychiatric conditions. The communication- as well as the connectivity- between corticolimbic regions of the brain are fundamental for eliciting inhibitory control behaviors, but early markers of vulnerability to this behavioral trait are yet to be discovered. The gradual maturation of the prefrontal cortex (PFC), in particular of the mesocortical dopamine innervation, mirrors the protracted development of inhibitory control; both are present early in life, but reach full maturation by early adulthood. Evidence suggests the involvement of the Netrin-1/DCC signaling pathway and its associated gene networks in corticolimbic development. Here we investigated whether an expression-based polygenic score (ePRS) based on corticolimbic-specific DCC gene co-expression networks associates with impulsivity-related phenotypes in community samples of children. We found that lower ePRS scores associate with higher measurements of impulsive choice in 6-year-old children tested in the Information Sampling Task and with impulsive action in 6- and 10-year-old children tested in the Stop Signal Task. We also found the ePRS to be a better overall predictor of impulsivity when compared to a conventional PRS score comparable in size to the ePRS (4515 SNPs in our discovery cohort) and derived from the latest GWAS for ADHD. We propose that the corticolimbic DCC-ePRS can serve as a novel type of marker for impulsivity-related phenotypes in children. By adopting a systems biology approach based on gene co-expression networks and genotype-gene expression (rather than genotype-disease) associations, these results further validate our methodology to construct polygenic scores linked to the overall biological function of tissue-specific gene networks.

Funder

U.S. Department of Health & Human Services | NIH | National Institute on Drug Abuse

Gouvernement du Canada | Canadian Institutes of Health Research

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Fonds de Recherche du Québec - Santé

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Psychiatry and Mental health,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3