Toxic potency-adjusted control of air pollution for solid fuel combustion

Author:

Wu Di,Zheng HaotianORCID,Li QingORCID,Jin LingORCID,Lyu Rui,Ding Xiang,Huo Yaoqiang,Zhao Bin,Jiang Jingkun,Chen JianminORCID,Li XiangdongORCID,Wang ShuxiaoORCID

Abstract

AbstractThe combustion of solid fuels, including coal and biomass, is a main anthropogenic source of atmospheric particulate matter (PM). The hidden costs have been underestimated due to lack of consideration of the toxicity of PM. Here we report the unequal toxicity of inhalable PM emitted from energy use in the residential sector and coal-fired power plants (CFPPs). The incomplete burning of solid fuels in household stoves generates much higher concentrations of carbonaceous matter, resulting in more than one order of magnitude greater toxicity than that from CFPPs. When compared with CFPPs, the residential sector consumed only a tenth of solid fuels in mainland China in 2017, but it contributed about 200-fold higher of the population-weighted toxic potency-adjusted PM2.5 exposure risk. We suggest that PM2.5-related toxicity should be considered when making air pollution emission control strategies, and incomplete combustion sources should receive more policy attention to reduce exposure risks.

Funder

National Natural Science Foundation of China

Research Grants Council of Hong Kong

Tencent Foundation through the XPLORER PRIZE; Foundation through the Samsung Advanced Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3