Abstract
AbstractEarth-abundant cathode materials are urgently needed to enable scaling of the Li-ion industry to multiply terawatt hours of annual production, necessitating reconsideration of how good cathode materials can be obtained. Irreversible transition metal migration and phase transformations in Li-ion cathodes are typically believed to be detrimental because they may trigger voltage hysteresis, poor kinetics and capacity degradation. Here we challenge this conventional consensus by reporting an unusual phase transformation from disordered Li- and Mn-rich rock salts to a new phase (named δ), which displays partial spinel-like ordering with short coherence length and exhibits high energy density and rate capability. Unlike other Mn-based cathodes, the δ phase exhibits almost no voltage fade upon cycling. We identify the driving force and kinetics of this in situ cathode formation and establish design guidelines for Li- and Mn-rich compositions that combine high energy density, high rate capability and good cyclability, thereby enabling Mn-based energy storage.
Funder
DOE | Office of Energy Efficiency & Renewable Energy | Vehicle Technologies Office
U.S. Department of Energy
UCSB MRSEC
Publisher
Springer Science and Business Media LLC
Subject
Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献